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Introduction of bacteriophage

- A bacteriophage (Phage) is a virus that infects and replicates

within bacteria and archaea

- Phages are found throughout the biosphere, including in bodies of water and
sewage, and in and on humans and animals, totaling an estimated 1x10731 virions
and outnumbering bacterial cells by ten-fold

- More than 6,000 phages have been characterized to date, with genome sizes 55
ranging from a few thousand to 480,000 nucleotides or more, most of them are as yet
undescribed

Guttman B, et al. Basic phage biology. 2005
Comeau AM, et al. Res Microbiol. 2008



Clinical implications of phages
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The use of phages to treat drug-
resistant bacterial infections has
stimulated interest in the use of
phages to treat a variety of human
diseases

Phage lytic life cycle as the basis for
conventional therapy. Strategies
include using phage-derived
enzymes and bioengineering of
phages

Dylan Lawrence, et al. Viruses. 2019



Life cycle of bacteriophages contain multi-level phage-host interactions
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Wenchen Song, et al. Nucleic Acids Research. 2019

Chaturongakul S. et al. Front. Microbiol. 2014
https://en.wikipedia.org/wiki/Prophage



Life cycle of bacteriophages contain multi-level phage-host interactions
DNA DNA
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6 Chaturongakul S. et al. Front. Microbiol. 2014
https://en.wikipedia.org/wiki/Prophage



Prophages are important to the whole ecosystem

- Prophages are important agents of horizontal gene transfer

- Prophages can participate in a number of bacterial cellular processes,

including antibiotic resistance, stress response, and virulence

7 Derrick E. Fouts. Nucleic Acids Research. 2006
Gipsi Lima-Mendez, et al. Bioinformatics, 2008



Three computational strategies for prophage identification

Strategy 1: Conventional methods Strategy 2: Machine learning
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https://www.illumina.com/science/technology/next-generation-
8 sequencing/beginners/ngs-cost.html




Strategy 1: Identify clusters of phage-like genes within a bacterial genome

Software Publishing year
Name

Prophage Finder 2006

Phage Finder 2006
Prophinder 2008




Identify clusters of phage-like genes within a bacterial genome

Bacteria genome *
I I I ] J

- Bacteria gene - phage gene

Detection of phage- Detecting phage-like
like CDSs in the gene clusters
bacteria genome

Selecting the putative
prophages

e Statistical test

e Sliding window

10



Strategy 2: Prophage identification is a machine learning

problem
<
labels machine
learning
tEEtEE algorithm
training extraction
data
. 4
finalized i
fp feature ey —p predicted labels
;‘:‘; extraction model E

https://subscription.packtpub.com/book/big_data_and_business_intelligence/9781783980284/2/ch02lvilsec14/
understanding-the-machine-learning-workflow



Selected features and implemented algorithms for MARVEL and PROPHAGE HUNTER

Software Publishing | Features Algorithms
Name Year
MARVEL 2018 (1) Average gene length random forest
(2) Average spacing between genes,
(3) Density of genes,
(4) Frequency of strand shifts between neighboring genes,
(5) ATG relative frequency,
(6) Fraction of genes with significant hits against the pVOGs database
Prophage 2019 (1) Transcriptional orientation logistic
Hunter (2) protein length regression

(3-22) Composition of 20 amino acids
(23) Watson-Crick ratio
(24) transcription strand switch

12




Training and testing Data preparation for prophage prediction

Features Labels
l \ l \

average average density of frequency of Prophage
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between between
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Introduction to Logistic Regression

Linear Regression
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Logistic regression equation :

Logistic Regression : :
9 g Linear regression Y = bg+b;xX;+b,XX,.......+bxX,

(LI R R R AT R R Lo
e

s

i 1
Sigmoid Function P =
1+e”Y

Predicted Y lies within
0 and 1 range

By putting Y in Sigmoid function, we get the following result.

In (1 i P) = bg+b, xX,+b,xX,.......+bex X,

Each X is a feature

14

https://towardsdatascience.com/introduction-to-logistic-regression-66248243c148



Machine learning methods need large sample size

¢¢
taking a minimum sample size of 500 is necessary to derive the statistics that

b D/
represent the parameters
Software Name Training set Testing set
MARVEL 1247 phages + 1029 bacteria host 335 bacteria + 177 phage

Prophage Hunter 1031 phages + 21979 bacteria host 2509 phages + 5495 bacteria

Mohamad Adam Bujang, et al. Malays J Med Sci. 2018



Strategy 3: deep learning methods using neural network

input layer
. hidderl layer 1 hiddgn layer 2
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DNA fragment:
5-ACGTTCGAACG-3
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- BiPathCNN contains a “base path” and a
“codon path,” which take BOH and COH as
inputs, respectively. After multiple
convolution operations, the data for the 2
paths are combined by a merge layer.

- 2,700,000 artificial contigs were generated
to train PPR-Meta

P O0OrFPPFPOO04H4900

Concatenation Layer 9
Full connection Layer 10
Softmax Layer 11
Phage score Chromosome score Plasmid score

Abbreviation:

NK: Number of Kernel
LK: Length of Kernel
AF: Activation Function
LP: Length of Pooling

17



Summary I: Comparison among three strategies

Strategy 1

Strategy 2

Strategy 3

Used years 2005-present 2016-present 2018-present
Methods Conventional Machine learning Deep learning
Selected features None Manually Auto
Explainable Easy Relatively easy Hard

Input data Medium Large Large
requirement

Computational Low Middle High

resources




Summary ll: Limitations and opportunities

Machine learning methods use more information compared with
conventional methods
Complex models don’t always mean better models, especially when we
have limited training datasets

- Interactions between features

- Overfitting

More comprehensive nucleotide and protein reference database for virus
is needed

Combination of multiple methods is possible for better performance



Future prospective |

Growth of DNA Sequencing
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https://towardsdatascience.com/the-future-of-computation-
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Future prospective Il

1. Data are accumulating and hardware is getting more powerful, which provide

the foundations for more sophisticated models

2. Computational biology is becoming a cross-disciplinary area, in order to take
advantage of the big data and architecture, applying those skills to leverage big

data is vital in future research for computational biologists.
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