Computational Methods for Virus-Host Interactions Prediction Liuyang Cai First-year PhD student @ Prof. Zigui Chen's lab Joint Graduate Student Seminar 2019/12/11 #### Content - Background - Bacteriophages and their clinical implications - Multi-levels phage-host interactions during phages' life cycle - Three computational strategies for phage-host interaction in DNA levels - Software and algorithms implemented in the three strategies - Comparisons of the above three strategies - Summaries and prospective ## Introduction of bacteriophage - A bacteriophage (Phage) is a virus that infects and replicates within bacteria and archaea - Phages are found throughout the biosphere, including in bodies of water and sewage, and in and on humans and animals, totaling an estimated 1x10^31 virions and outnumbering bacterial cells by ten-fold - More than 6,000 phages have been characterized to date, with genome sizes 55 ranging from a few thousand to 480,000 nucleotides or more, most of them are as yet undescribed ## **Clinical implications of phages** The use of phages to treat drugresistant bacterial infections has stimulated interest in the use of phages to treat a variety of human diseases Phage lytic life cycle as the basis for conventional therapy. Strategies include using phage-derived enzymes and bioengineering of phages #### Life cycle of bacteriophages contain multi-level phage-host interactions #### Protein-protein Wenchen Song, et al. *Nucleic Acids Research. 2019*Chaturongakul S. et al. *Front. Microbiol. 2014*https://en.wikipedia.org/wiki/Prophage #### Life cycle of bacteriophages contain multi-level phage-host interactions Wenchen Song, et al. *Nucleic Acids Research. 2019* Chaturongakul S. et al. *Front. Microbiol. 2014* https://en.wikipedia.org/wiki/Prophage ## Prophages are important to the whole ecosystem - Prophages are important agents of horizontal gene transfer - Prophages can participate in a number of bacterial cellular processes, including antibiotic resistance, stress response, and virulence #### Three computational strategies for prophage identification ## Strategy 1: Identify clusters of phage-like genes within a bacterial genome | Software
Name | Publishing year | |------------------|-----------------| | Prophage Finder | 2006 | | Phage_Finder | 2006 | | Prophinder | 2008 | #### Identify clusters of phage-like genes within a bacterial genome ## Strategy 2: Prophage identification is a CLASSIFICATION machine learning problem preprocessing learning training phase labels machine learning algorithm feature training extraction data preprocessing evaluating / testing finalized feature predicted labels test model extraction data Step 1 Step 2 #### Selected features and implemented algorithms for MARVEL and PROPHAGE HUNTER | Software
Name | Publishing
Year | Features | Algorithms | |--------------------|--------------------|--|------------------------| | MARVEL | 2018 | (1) Average gene length (2) Average spacing between genes, (3) Density of genes, (4) Frequency of strand shifts between neighboring genes, (5) ATG relative frequency, (6) Fraction of genes with significant hits against the pVOGs database | random forest | | Prophage
Hunter | 2019 | (1) Transcriptional orientation (2) protein length (3-22) Composition of 20 amino acids (23) Watson-Crick ratio (24) transcription strand switch | logistic
regression | ## **Training and testing Data preparation for prophage prediction** | | | Features | | | | Labels | |--------------|------------------------|--|------------------|--|-----|----------| | | | | | | | | | | average
gene length | average
spacing
between
genes | density of genes | frequency of
strand shifts
between
neighboring
genes | ••• | Prophage | | | 1Kb | 1.5Kb | 0.5 | 0.5 | | Yes | | Training set | 2Kb | 2.8Kb | 0.8 | 0.8 | ••• | No | | | 3Kb | 2Kb | 0.9 | 0.9 | ••• | Yes | | Г | — 2.5Kb | 5.6Kb | 0.7 | 0.5 | | No | | Testing set | 3Kb | 2.8Kb | 0.6 | 0.4 | ••• | Yes | | | 1.4Kb | 2.6Kb | 0.5 | 0.6 | ••• | No | ## **Introduction to Logistic Regression** Logistic regression equation: Linear regression $$Y = b_0 + b_1 \times X_1 + b_2 \times X_2 + \cdots + b_K \times X_K$$ Sigmoid Function $$P = \frac{1}{1+e^{-Y}}$$ By putting Y in Sigmoid function, we get the following result. In $$(\frac{P}{1-P}) = b_0 + b_1 \times X_1 + b_2 \times X_2 + \dots + b_K \times X_K$$ Each X is a feature #### Machine learning methods need large sample size 66 taking a minimum sample size of 500 is necessary to derive the statistics that " #### represent the parameters | Software Name | Training set | Testing set | |-----------------|-----------------------------------|-----------------------------| | MARVEL | 1247 phages + 1029 bacteria host | 335 bacteria + 177 phage | | Prophage Hunter | 1031 phages + 21979 bacteria host | 2509 phages + 5495 bacteria | #### Strategy 3: deep learning methods using neural network #### Structure of BiPathCNN - BiPathCNN contains a "base path" and a "codon path," which take BOH and COH as inputs, respectively. After multiple convolution operations, the data for the 2 paths are combined by a merge layer. - 2,700,000 artificial contigs were generated to train PPR-Meta ## **Summary I: Comparison among three strategies** **Basic** information Required resources | | Strategy 1 | Strategy 2 | Strategy 3 | |-------------------------|--------------|------------------|---------------| | Used years | 2005-present | 2016-present | 2018-present | | Methods | Conventional | Machine learning | Deep learning | | Selected features | None | Manually | Auto | | Explainable | Easy | Relatively easy | Hard | | Input data requirement | Medium | Large | Large | | Computational resources | Low | Middle | High | ## **Summary II: Limitations and opportunities** - Machine learning methods use more information compared with conventional methods - Complex models don't always mean better models, especially when we have limited training datasets - Interactions between features - Overfitting - More comprehensive nucleotide and protein reference database for virus is needed - Combination of multiple methods is possible for better performance ## **Future prospective I** ## **Future prospective II** - 1. Data are accumulating and hardware is getting more powerful, which provide the foundations for more sophisticated models - 2. Computational biology is becoming a cross-disciplinary area, in order to take advantage of the big data and architecture, applying those skills to leverage big data is vital in future research for computational biologists. #### References Dyer, M. D., Murali, T. M. & Sobral, B. W. Computational prediction of host-pathogen protein—protein interactions. *Bioinformatics* **23**, i159–i166 (2007). Arango-Argoty, G. *et al.* DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data. *Microbiome* **6**, 23 (2018). Amgarten, D., Braga, L. P. P., da Silva, A. M. & Setubal, J. C. MARVEL, a Tool for Prediction of Bacteriophage Sequences in Metagenomic Bins. *Front. Genet.* **9**, (2018). Fouts, D. E. Phage_Finder: Automated identification and classification of prophage regions in complete bacterial genome sequences. *Nucleic Acids Res* **34**, 5839–5851 (2006). Zhou, Y., Liang, Y., Lynch, K. H., Dennis, J. J. & Wishart, D. S. PHAST: A Fast Phage Search Tool. *Nucleic Acids Res* **39**, W347–W352 (2011). Fang, Z. et al. PPR-Meta: a tool for identifying phages and plasmids from metagenomic fragments using deep learning. *Gigascience* **8**, (2019). Bose, M. & Barber, R. D. Prophage Finder: A Prophage Loci Prediction Tool for Prokaryotic Genome Sequences. 5. Lima-Mendez, G., Van Helden, J., Toussaint, A. & Leplae, R. Prophinder: a computational tool for prophage prediction in prokaryotic genomes. *Bioinformatics* **24**, 863–865 (2008). Guttman B, Raya R, Kutter E. 2005. Basic phage biology, p 29-66. In Kutter E, 268 Sulakvelidze A (ed), Bacteriophages: biology and applications Comeau AM, Hatfull GF, Krisch HM, Lindell D, Mann NH, Prangishvili D. 2008. Exploring 274 the prokaryotic virosphere. Res Microbiol 159:306-13. 22 # THANK YOU